Problemi ed equivalenze con le misure

Le misure di grandezza non hanno più segreti! Prova a risolvere i problemi più difficili applicando le equivalenze. Ripassa il metro, il chilogrammo e il litro e prova a trovare la soluzione!

Appunti

Ecco tre problemi svolti.

Per risolvere questi problemi basta saper fare le equivalenze. Con qualche calcolo riuscirai ad arrivare alla soluzione!

Segui tutti i passaggi per capire come risolvere un problema sulla lunghezza, uno sulla massa e uno sulla capacità.

Preparati al meglio per risolvere gli esercizi della verifica!

Sei un docente? Scrivi a scuola@redooc.com

Sei un genitore? Acquista col bottone qui sotto

Risolvi un problema sulla lunghezza

DATI:
rosso £$ = 127 \text{ dam} $£
blu £$ = 8{,}52 \text{ hm} $£
verde £$ = 2530 \text{ dm} $£
arancione £$ = 0{,}965 \text{ km} $£

DOMANDA: lunghezza totale del percorso in metri = ?

Per calcolare la lunghezza totale del percorso dobbiamo sommare le lunghezze delle quattro parti: £$ 127 \text{ dam} + 8{,}52 \text{ hm} + 2530 \text{ dm} + 0{,}965 \text{ km} $£

Attenzione! Per sommare queste lunghezze dobbiamo usare la stessa unità di misura! La domanda ci chiede di calcolare la lunghezza totale del percorso in metri, allora conviene convertire ciascuna lunghezza in metri.

Per esempio, convertiamo £$ 127 \text{ dam} $£ in metri: basta moltiplicare per £$10$£! £$ 127 \text{ dam} = 127 \times 10 \text{ m} = 1270 \text{ m} $£

Procediamo nello stesso modo anche per le altre misure.

  • £$ 8{,}52 \text{ hm} = 8{,}52 \times 100 \text{ m} = 852 \text{ m} $£
  • £$ 2530 \text{ dm} = 2530 : 10 \text{ m} = 253 \text{ m} $£
  • £$ 0{,}965 \text{ km} = 0{,}965 \times 1000 \text{ m} = 965 \text{ m} $£

E ora sommiamo!

$$ 1270 \text{ m} + 852 \text{ m} + 253 \text{ m} + 965 \text{ m} = 3340 \text{ m} $$

Il percorso di allenamento è lungo in totale £$3340 \text{ m} $£.

IDEA! Possiamo anche svolgere lo stesso problema compilando una semplice tabellina. Scegli tu il metodo che preferisci!

\begin{array}{c|c|c||c||c|c} \text{km}&\text{hm}&\text{dam}&\text{m}&\text{dm}&\\ 1&2&7&&&+\\ &8&5&2&&+\\ &2&5&3&0&+\\ 0&9&6&5&&=\\ \hline 3&3&4&0&\text{m} \end{array}

Risolvi un problema sulla massa

Risolvi un problema sulla massa

Risolvi un problema sulla capacità

Risolvi un problema sulla capacità