Cos'è una proporzione e come risolverla con la proprietà fondamentale

Le proporzioni in matematica sono uguaglianze tra due rapporti equivalenti.

Scopri come risolvere una proporzione con la proprietà fondamentale delle proporzioni.

Appunti

Una proporzione è un'uguaglianza tra rapporti equivalenti.

I termini della proporzione sono i medi e gli estremi: non confonderti, è fondamentale per poter applicare al meglio la proprietà fondamentale delle proporzioni. Ricordi il prodotto in croce che abbiamo imparato per confrontare due frazioni? La proprietà fondamentale delle proporzioni si basa sullo stesso principio: sappiamo che le due frazioni sono equivalenti, quindi dobbiamo trovare il termine che verifica questa situazione.

PREREQUISITI

Ripassa le divisioni, le frazioni e dai anche una rinfrescata ai rapporti.

Accedi per sempre a tutte le lezioni FREE con video ed esercizi spiegati!

Prerequisiti per imparare cos'è una proporzione

Prerequisiti per imparare cos'è una proporzione:

Che cos'è una proporzione

Una proporzione è un’uguaglianza tra due rapporti equivalenti.

Esempio: £$2 : 5 = 54 : 135 $£ è una proporzione in cui uguagliamo il rapporto £$2 : 5$£ e il rapporto £$54 : 135$£. Infatti £$ \dfrac{54}{135} = \dfrac{6 \cdot 9}{ 15 \cdot 9} = \dfrac{2}{5}$£.

I due punti nei rapporti si leggono "sta a", mentre l'uguale si legge "come".

Quindi leggiamo la proporzione così: "£$2$£ sta a £$5$£ come £$54$£ sta a £$135$£".

I termini della proporzione

Gli elementi della proporzione hanno dei nomi:

  • i primi termini di ciascun rapporto sono gli antecedenti, i secondi termini invece sono i conseguenti.
    Esempio: per la proporzione £$2 : 5 = 54 : 135$£ il £$2$£ ed il £$54$£ sono gli antecedenti, mentre il £$5$£ ed il £$135$£ sono i conseguenti.
  • I termini esterni della proporzione si chiamano estremi, mentre i termini interni si chiamano medi.
    Esempio: per la proporzione £$2 : 5 = 54 : 135$£ il £$2$£ e il £$135$£ sono gli estremi, mentre il £$5$£ e il £$54$£ sono i medi.

Possiamo trovare rapporti tra grandezze omogenee e non omogenee. Quando svolgiamo una proporzione è importante che i due antecedenti si riferiscano entrambi alla parte (o viceversa al tutto) e che i due conseguenti si riferiscano entrambi al tutto (o viceversa alla parte).

Per esempio diciamo che il £$ 20\% $£ di £$ 80 $£ è uguale a £$ 16 $£ e possiamo scrivere questa proporzione: £$ 20 : 100 = 16 : 80 $£. Gli antecedenti sono £$ 20 $£ e £$ 16 $£ e rappresentano entrambi una parte del totale (che è scritto nei conseguenti, ed è il £$ 100 \% $£ oppure £$ 80 $£). Ma possiamo scrivere anche questa proporzione: £$ 100 : 20 = 80 : 16 $£. In questo caso, gli antecedenti rappresentano il tutto (£$ 100 \% $£ e £$ 80 $£), mentre i conseguenti sono la parte (£$ 20 \% $£ e £$ 16 $£).

Qual è la proprietà fondamentale delle proporzioni

La proprietà fondamentale delle proporzioni dice che il prodotto dei medi è uguale al prodotto degli estremi.

Esempio: £$2 : 5 = 54 : 135$£ troviamo quindi che £$5 \cdot 54 = 2 \cdot 135$£. Infatti £$ 5 \cdot 54 = 270 = 2 \cdot 135$£.

A cosa serve la proprietà fondamentale delle proporzioni? Possiamo usarla per verificare se una proporzione è corretta, cioè per controllare che sia un'uguaglianza tra due rapporti.

Esempio: £$2:5=3:15$£ non è una proporzione, infatti £$5 \cdot 3 =15 $£ che è diverso da £$ 2 \cdot 15=30$£.

Nel calcolo delle proporzioni, la proprietà fondamentale è più utile quando si deve calcolare un termine di una proporzione conoscendo gli altri £$ 3 $£. Se non conosci un valore della proporzione, chiamalo £$x$£. Per trovare il valore di £$x$£ applica la proprietà fondamentale e poi usa le formule inverse.

Esempio: £$5 : 400 = 2 : x$£ basta moltiplicare tra loro i medi e gli estremi, come dice la proprietà fondamentale. In questo modo troviamo £$400 \cdot 2 = 5 \cdot x$£, quindi per ricavare £$x$£, dobbiamo trovare quel numero che, moltiplicato per £$ 5 $£ dà £$ 800 $£, cioè £$ \frac{400 \cdot 2}{5} = x$£ che possiamo scrivere anche così: £$x = \frac{400 \cdot 2}{5}$£. Semplifichiamo il £$400$£ con il £$5$£ e troviamo che £$x = 80 \cdot 2 = 160$£.

Questo è quello che facciamo anche quando dobbiamo fare una torta per £$2$£ persone, ma nella ricetta ci sono le dosi per £$5$£ persone. Per trovare le dosi esatte, svolgi una proporzione! Facciamolo con la farina: per £$5$£ persone servono £$750 \text{ g}$£ di farina, per £$2$£ persone ne serviranno £$x$£, quindi scriviamo £$750:5=x:2$£. Applicando la proprietà fondamentale delle proporzioni troviamo £$5 \cdot x=750 \cdot 2 $£ allora £$ x=\frac{750 \cdot 2}{5}=300$£
Per £$2$£ persone bastano £$300 \text{ g}$£ di farina! Fai la proporzione con tutti gli ingredienti e la torta verrà perfetta!

Quando usiamo le proporzioni

Le proporzioni sono molto utili quando devi fare una torta oppure quando ci sono i saldi!

Perché sono utili nei saldi?
Un modo per calcolare i prezzi scontati è quello di utilizzare le proporzioni. Vorresti un vestito che costa £$135 \ € $£ a prezzo pieno e vuoi calcolare quanto spenderesti in meno con il £$30 \%$£ di sconto. Chiamiamo £$x$£ il risparmio, in denaro. La proporzione da risolvere è: £$30:100=x:135$£, cioè lo sconto percentuale (£$ 30\% $£) sta alla percentuale totale (£$100 \% $£) come il risparmio sta al costo del vestito (£$ 135 \ € $£). Applichiamo la proprietà fondamentale delle proporzioni e troviamo: £$100 \cdot x= 30 \cdot 135$£, quindi £$x=\frac{30 \cdot 135}{100}=40,5$£. Risparmieresti £$40, 5 \ €$£, quindi spenderesti £$135-40,5=94,5 \ €$£.
Abbiamo così usato le proporzioni per calcolare una percentuale!

Perché sono utili quando prepariamo le torte?
Possono esserci utili quando facciamo una torta. La ricetta dice che per £$8$£ persone servono £$1000 \text{ g}$£ di farina, £$350 \text{ g}$£ di zucchero, £$1 \text{ l}$£ di latte, un pizzico di sale e un baccello di vaniglia! Tu hai invitato solo £$3$£ persone e non vuoi che avanzi della torta. Quale sarà la tua ricetta? La troverai facendo le proporzioni per tutti gli ingredienti:

  • Farina: £$1000: 8=x:3$£ quindi £$x=\frac{1000 \cdot 3}{8}=375$£. Ti serviranno £$375 \text{ g}$£ di farina!
  • Zucchero: £$350:8=x:3$£ quindi £$ x=\frac{350 \cdot 3}{8}=131,25$£ Ti serviranno £$132 \text{ g}$£ di zucchero, sempre meglio arrotondare per eccesso!
  • Latte: £$1\text{ l}=1000 \text{ ml}$£, facciamo la proporzione in £$ \text{ml}$£ che è più comodo! £$1000:8=x:3$£, che è la stessa proporzione della farina, quindi ti serviranno £$375 \text{ ml}$£ di latte!
  • Vaniglia: £$1:8=x:3$£ quindi £$x=\frac{3}{8}$£. Dividi il baccello di vaniglia in £$8 $£ parti e usane £$3$£!
  • Sale... Beh, un po' meno di un pizzico dovrebbe bastare!