Parallelogrammi

Un parallelogramma è un quadrilatero formato da due coppie di lati paralleli. Tra i parallelogrammi riconosciamo i rettangoli, i rombi e i quadrati. Scopri tutte le proprietà di questi poligoni e impara come calcolare il perimetro di tutti i parallelogrammi.

Il termine "parallelogramma" significa "linea parallela". Infatti un parallelogramma è una figura di quattro lati, paralleli e congruenti a due a due.

I parallelogrammi costituiscono un sottoinsieme dei trapezi e sono le forme che incontriamo più spesso nella vita di tutti i giorni: lo schermo dello smartphone o del computer, il campo da basket, o anche i pannelli solari che stanno sui tetti delle case!

I rettangoli sono parallelogrammi equiangoli: hanno quattro angoli retti. I rombi sono parallelogrammi equilateri: hanno quattro lati uguali. I quadrati sono parallelogrammi equilateri ed equiangoli: hanno quattro angoli retti e quattro lati uguali, quindi sono poligoni regolari.

Impara a riconoscere tutti i parallelogrammi e scopri tutte le loro proprietà!

Accedi per sempre a tutte le lezioni FREE con video ed esercizi spiegati!

Prerequisiti per imparare tutto sui parallelogrammi

I prerequisiti per imparare tutto sui parallelogrammi sono:

Che cosa sono i parallelogrammi?

Proprietà del parallelogramma

transparent placeholder

Perimetro del parallelogramma

transparent placeholder

Tra tutti i poligoni con quattro lati, ce ne sono alcuni che hanno delle caratteristiche particolari: i parallelogrammi.

Il termine parallelogramma significa “linea parallela”, infatti un parallelogramma è un quadrilatero con i lati opposti paralleli e congruenti.

Anche gli angoli opposti di un parallelogramma sono congruenti. Gli angoli adiacenti a ciascun lato, invece, sono supplementari: la loro somma è uguale ad un angolo di £$ 180^\circ $£. Visto che i lati opposti di un parallelogramma sono paralleli, valgono le proprietà delle parallele tagliate da una trasversale: gli angoli coniugati interni sono supplementari!

Un’altra proprietà interessante riguarda le diagonali: ogni parallelogramma ha due diagonali che si intersecano nel loro punto medio.

Per i lati di un parallelogramma, parliamo di base e lato obliquo: basta indicare la misura di due lati per avere tutte le informazioni, perché i lati opposti sono paralleli e congruenti. Per calcolare il perimetro di un parallelogramma, basta sommare la misura di una base e di un lato obliquo, quindi moltiplicare per £$ 2 $£:

$$ p = ( b + l ) \cdot 2 $$

Il rombo

Proprietà del rombo

transparent placeholder

Perimetro del rombo

transparent placeholder

Anche i parallelogrammi possono essere equilateri. Un parallelogramma con quattro lati congruenti è un rombo. Hai mai sentito parlare del pesce rombo? Questo pesce ha una forma che ricorda questa figura geometrica. ;-)

Il rombo ha tutte le caratteristiche di cui abbiamo già parlato per i parallelogrammi, quindi gli angoli opposti congruenti, i lati opposti paralleli, ma, in più, i quattro lati sono congruenti. Le diagonali del rombo sono anche le bisettrici dei quattro angoli. Si intersecano nel loro punto medio e sono perpendicolari tra loro: tracciate le due diagonali del rombo, questo risulta diviso in quattro triangoli rettangoli, tutti congruenti tra loro. Nel rombo le due diagonali non sono congruenti: distinguiamo la diagonale maggiore e la diagonale minore.

Calcolare il perimetro del rombo è facile: conoscendo la misura di un lato, possiamo trovare il perimetro moltiplicandola per £$ 4 $£:

$$ p = 4 \cdot l $$

Il rettangolo

Proprietà del rettangolo

transparent placeholder

Perimetro del rettangolo

transparent placeholder

Un parallelogramma equiangolo è un rettangolo. Un rettangolo è un poligono con quattro angoli retti, come si intuisce dal suo nome.

Le diagonali del rettangolo si intersecano nel loro punto medio. Le due diagonali del rettangolo sono congruenti.

Anche con quattro angoli retti, questo poligono resta sempre un parallelogramma, cioè un quadrilatero con i lati opposti paralleli e congruenti. Chiamiamo i lati orizzontali congruenti basi £$( b )$£ e i lati verticali altezze £$ ( h ) $£.

Per calcolare il perimetro del rettangolo, procediamo come per un generico parallelogramma: sommiamo la base e l’altezza e poi moltiplichiamo per £$ 2 $£:

$$ p = (b + h) \cdot 2 $$

Il quadrato

Proprietà del quadrato

transparent placeholder

Perimetro del quadrato

transparent placeholder

Un parallelogramma equilatero ed equiangolo è un quadrato. Un quadrato è un poligono con quattro lati congruenti e quattro angoli retti. Un quadrato è un poligono regolare!

In inglese indichiamo questo poligono con il termine square, che però significa anche piazza. Ci hai mai fatto caso? La piazza era orginariamente un luogo aperto dedicato al commercio che si trovava all'incrocio di quattro strade: aveva proprio la forma di un quadrato!

Come per i rettangoli, le diagonali del quadrati sono congruenti e si intersecano nel loro punto medio. Come per i rombi, le diagonali sono perpendicolari e sono le bisettrici dei quattro angoli.

Per calcolare il perimetro del quadrato, procediamo come per il rombo: moltiplichiamo per £$ 4 $£ la misura del lato.

$$ p = 4 \cdot l $$

Esercizi svolti su parallelogrammi

Ecco gli esercizi su parallelogrammi in ordine di difficoltà crescente, completi di procedimento, spiegazione e soluzione. Ogni esercizio è in forma di domanda con 3 o 4 opzioni di risposta. Gli esercizi sono interattivi e danno feedback immediato. Ogni esercizio spiegato ti aiuta a studiare e ripassare velocemente per l'interrogazione ed il compito su Quadrilateri. Allenati con gli esercizi svolti di matematica, accumula punti! Completa tutti i livelli di difficoltà dell'esercitazione per migliorare i tuoi voti in Geometria!

ESERCIZI PARALLELOGRAMMI - 1

Quali sono le caratteristiche di un rombo? E quelle di un rettangolo? Quali sono le proprietà di un quadrato? Mettiti alla prova con gli esercizi spiegati!

ESERCIZI PARALLELOGRAMMI - 2

Ecco gli esercizi svolti sui parallelogrammi: calcola le misure del perimetro e dei lati, rifletti sulle proprietà di rombi, rettangoli e quadrati .

ESERCIZI PARALLELOGRAMMI - 3

Metti in pratica tutto quello che hai imparato sui parallelogrammi con i problemi di geometria, tutti con soluzioni. Leggi il problema, trova i dati e individua che cosa stai cercando: sei pronto per risolvere i problemi più difficili!

Saldi con Carta del docente e 18App
Saldi con Carta del docente e 18App