Derivate di funzioni composte e inverse

Impara a trovare la formula della derivata di una funzione composta o inversa. Risolvi tutti gli esercizi per diventare un asso nel calcolo delle derivate!

Fa parte delle regole del calcolo delle derivate anche la derivazione di funzioni inverse come per esempio l’arcoseno o l’arcotangente.

Gli esercizi svolti e gli esempi spiegati nelle video pillole saranno molto utili per capire e imparare le regole del calcolo delle derivate.

Accedi per sempre a tutte le lezioni FREE con video ed esercizi spiegati!

Prerequisiti per imparare il calcolo delle derivate

I prerequisiti per imparare il calcolo delle derivate sono:

Come derivare una funzione composta

Hai imparato a derivare le somme, i prodotti e i quozienti di funzioni elementari, e se hai una funzione composta? Una funzione composta è una funzione di funzione, cioè, per esempio, £$h(x)=\ln (sen \ x)$£, quindi è una funzione che ha per argomento un'altra funzione.
Comederivare una funzione composta? La regola per derivare una funzione di funzione si chiama anche regola della catena o derivata “a cipolla” perché devi derivare, di seguito tutte le funzioni “componenti” ossia tutte quelle che trovi una dentro l’altra, partendo da quella più esterna, fino ad arrivare a quella più interna e devi poi moltiplicarle fra loro.

Quindi, per esempio, se le funzioni sono due, £$f$£ e £$g$£, la derivata di £$f(g(x))$£ è £$ [f(g(x))]’=f’(g(x)) \cdot g’(x)$£
Perciò se £$h(x)=\ln(sen \ x)$£, le funzioni componenti sono £$f(x)=\ln (g(x))$£ e £$g(x)=sen \ x $£. La derivata è. £$h'(x)=\frac{1}{sen \ x} \cdot cos \ x$£

Come derivare una funzione composta da più funzioni

Regola di derivazione di una funzione composta da più funzioni

Trucchi: calcolo della derivata della composizione di più funzioni

Quando una funzione è composta da tre o più funzioni, come cambia la regola di derivazione? La regola per derivare una funzione composta va bene sia che le funzioni composte siano due o più. È sempre la regola della catena: bisogna moltiplicare la derivata di tutte le funzioni “componenti” ossia tutte quelle che trovi una dentro l’altra, partendo da quella più esterna.

Abbiamo visto che se le funzioni sono due, £$f$£ e £$g$£, la derivata di £$f(g(x))$£ è £$[f(g(x))]’=f’(g(x)) \cdot g’(x)$£.
Se la funzione è composta da tre funzioni: £$f$£, £$g$£ e £$h$£ allora la derivata di £$f(g(h(x)))$£ è: £$[f(g(h(x)))]’=f’(g(h(x))) \cdot g’(h(x)) \cdot h’(x)$£...e così via.

Come derivare una funzione elevata un’altra funzione

transparent placeholder

La regola per derivare la funzione composta è detta regola della "catena" perché derivi le funzioni componenti a partire dalla più esterna e le moltiplichi. Una particolare funzione composta da due funzioni è questa: date £$ f $£ e £$g$£, ottieni £$ [f(x)]^{g(x)} $£.
Come derivare unafunzione elevata un'altra funzione? Potresti applicare la regola di derivazione delle derivate composte, ma prima dovresti passare al logaritmo e fare alcuni passaggi algebrici, allora studiamo la regola generale per velocizzare i calcoli. La derivata di questa particolare funzione esponenziale composta è £$ \left( [f(x)]^{g(x)} \right)’=f(x)^ {g(x)} \left[ g’(x) \ln (f(x))+ \frac{g(x)f’(x)}{f(x)}\right] $£. Se, per esempio, hai le due funzioni £$f(x)=sen \ x$£ e £$g(x)=x^2$£, e la funzione £$h(x)=(sen \ x)^{x^2}$£, che ha derivata: £$h'(x)=(sen \ x)^{x^2} \cdot \left[2x \ln (sen \ x)+ \frac{x^2 \cdot cos \ x}{sen \ x} \right]$£.

Come calcolare la derivata delle funzioni inverse

Regola: come fare la derivata delle funzioni inverse

transparent placeholder

Derivata arcoseno, arcocoseno, arcotangente e arcocotangente

transparent placeholder

Ora che hai imparato a derivare la somma, il prodotto, il quoziente e la composizione di funzioni puoi completare il calcolo delle derivate imparando a calcolare la derivata di funzioni inverse e unendo tutte queste formule negli esercizi.
Imparare a calcolare la derivata della funzione inversa è utile quando hai funzioni come l'arcoseno o l'arcotangente, che non hanno derivata elementare ma che sono le funzioni inverse delle funzioni goniometriche elementari.
Partiamo quindi dalla formula principale: la derivata di una funzione inversa è uguale all’inverso della derivata della funzione di partenza. £$y=f(x)$£ ha inversa £$x=f^{-1}(y)$£ e la sua derivata è: £$(f^{-1}(y))’=\frac{1}{f’(x)}$£.
Partendo da questa regola trovi le derivate delle funzioni arcoseno, arcocoseno, arcotangente, arcocotangente che sono le funzioni inverse delle funzioni goniometriche seno, coseno, tangente, cotangente. Trovi tutte le formule che vuoi nella tabella delle derivate qui sopra!

Esercizi svolti sul calcolo delle derivate

Esercizio svolto: funzione logaritmo composto con un quoziente

Esercizio svolto: funzione composta con il prodotto seno e coseno

Sai calcolare la derivata di una somma, di un prodotto, di un quoziente, della composizione di funzioni e di funzioni inverse. Tieni a mente tutte le formuledel calcolo delle derivate perché saranno utili per fare gli esercizi difficili in cui tutti questi calcoli si uniscono e si mischiano. Per aiutarti abbiamo svolto degli esercizi in cui ci sono le derivate di funzioni composte da somme, prodotti e quozienti di funzioni come logaritmo, seno, coseno, arcotangente e polinomi. Tutti gli esercizi sono svolti passo passo e indicando dei trucchi per semplificare il calcolo delle derivate!

Esercizi svolti Calcolo delle derivate

Ecco gli esercizi su Calcolo delle derivate in ordine di difficoltà crescente, completi di procedimento, spiegazione e soluzione. Ogni esercizio è in forma di domanda con 3 o 4 opzioni di risposta. Gli esercizi sono interattivi e danno feedback immediato. Ogni esercizio spiegato ti aiuta a studiare e ripassare velocemente per l'interrogazione ed il compito su Derivate. Allenati con gli esercizi svolti di matematica, accumula punti e entra in classifica! Completa tutti i livelli di difficoltà dell'esercitazione per migliorare i tuoi voti in Relazioni e funzioni.

Esercizi Calcolo delle derivate - 1

Un livello di esercizi per imparare a calcolare la derivata della somma, del prodotto, del quoziente e della composizione di funzioni. In questi esercizi spiegati trovi anche le regole di derivazione delle funzioni inverse.

Esercizi Calcolo delle derivate - 2

Con gli esercizi del livello 2 puoi imparare a derivare funzioni più complicate che si scrivono come somma, prodotto, quoziente, e composizione di funzioni elementari. Qualche esercizio spiegato è dedicato anche alle funzioni inverse.

Esercizi Calcolo delle derivate - 3

Alcune funzioni sono la composizione di somme, prodotti, quozienti e funzioni inverse. Per imparare a derivare questo tipo di funzioni fai gli esercizi di questo livello, sono tutti svolti e spiegati!

Saldi con Carta del docente e 18App
Saldi con Carta del docente e 18App