Studio di funzione arcotangente - esempio

Tra le funzioni goniometriche inverse, la funzione arcotangente è quella che viene più utilizzata dagli studenti. Infatti ha un bel grafico, belle proprietà, ma soprattutto ha una derivata splendida, ottima anche per calcolare alcuni tipi di integrale.

Vuoi vedere come abbiamo studiato una funzione con l'arcotangente? Scoprilo subito!

Appunti

Per studiare una funzione con l'arcotangente è necessario ricordarsi:

  • la definizione di arcotangente e le sue proprietà
  • la formula per calcolare la derivata dell'arcotangente

Per il resto, basta sempre un po' di allenamento. Con questa lezione, lo studio di una funzione che ha l'arcotangente nella sua espressione non avrà più segreti!

Accedi per sempre a tutte le lezioni FREE con video ed esercizi spiegati!

Prerequisiti per imparare a fare lo studio di funzione arcotangente

I prerequisiti per imparare a fare lo studio di funzione arcotangente sono:

Studio di funzione arcotangente

Iniziamo lo studio della funzione £$f(x)=arctg\left(\frac{x-1}{x+1}\right)$£. Il primo passo è ricavare il dominio della funzione (cioè l'insieme delle £$x$£ che hanno immagine) ed eventuali simmetrie.
Poi passiamo alla ricerca delle intersezioni con gli assi, che ci servono per iniziare a capire per dove passa il grafico della funzione.
Dopo le intersezioni con gli assi, studiamo il segno della funzione. Significa andare alla ricerca degli intervalli di positività e negatività della funzione.

Ricorda di aggiornare il grafico probabile dopo ogni passaggio. In questo modo puoi accorgerti se stai facendo qualche errore di calcolo. Infatti, tutte le informazioni devono essere coerenti e non portare a una contraddizione!

Calcolo dei limiti

Dopo aver trovato il dominio, le intersezioni con gli assi e il segno della funzione, passiamo al calcolo dei limiti.
Come capire quali limiti calcolare? È molto semplice: scriviamo il dominio come intervallo o unione di intervalli. Poi calcoliamo i limiti agli estremi del dominio.

Ricorda che se a £$\pm \infty$£ il limite è infinito, potrebbe esserci un asintoto obliquo. Ricordi come calcolare l'asintoto obliquo? Se hai dei dubbi puoi ripassarlo nella lezione sul calcolo degli asintoti.

Derivata prima, massimi e minimi

Lo studio della derivata prima della funzione è fondamentale per molti aspetti:

- permette di studiare gli intervalli di monotonia della funzione, dove cioè cresce e dove decresce;

- nei punti in cui si annulla, possiamo trovare i massimi e i minimi della funzione. Ma potrebbero essere anche punti di flesso a tangente orizzontale. Diventa fondamentale lo studio del segno.

- possiamo trovare eventuali punti di non derivabilità della funzione.

Oltre a questo, ci aiuta a definire meglio il grafico probabile della funzione.

Se non ricordi come calcolare la derivata di una funzione, puoi ripassare tutto quello di cui hai bisogno nella lezione sul calcolo delle derivate.

Derivata seconda, concavità e flessi

Lo studio della derivata seconda ci aiuta a trovare gli intervalli in cui la funzione ha concavità verso l'alto e verso il basso. Nei punti in cui la funzione cambia la concavità ci possono essere dei punti di flesso, ed è importante trovarli in modo da completare e rendere più preciso il grafico della funzione.