£$ \begin{array}{|c|c|} \hline & \textbf{Formule di addizione} \\ \hline \textbf{seno} & sen(\alpha+\beta)=sen\alpha \, cos\beta+cos\alpha \, sen\beta \\ \hline{\textbf{coseno}}& cos(\alpha+\beta)=cos\alpha \, cos\beta-sen\alpha \, sen\beta \\ \hline{\textbf{tangente}} & tg(\alpha+\beta)=\dfrac{tg\alpha+tg\beta}{1-tg\alpha \, tg\beta} \\ \hline{\textbf{cotangente}} & cotg(\alpha+\beta)=\dfrac{cotg\alpha \, cotg\beta-1}{cotg\alpha+cotg\beta} \\ \hline \end{array} $£
£$\begin{array}{|c|c|c|} \hline & \textbf{Formule di sottrazione} \\ \hline{\textbf{seno}} & sen(\alpha-\beta)= sen\alpha \, cos\beta-cos\alpha \, sen\beta\\\hline{\textbf{coseno}}& cos(\alpha-\beta)= cos\alpha \, cos\beta+sen\alpha \, sen\beta\\\hline{\textbf{tangente}}{} & tg(\alpha-\beta)=\dfrac{tg\alpha-tg\beta}{1+tg\alpha \, tg\beta}\\\hline{\textbf{cotangente}}{} & cotg(\alpha-\beta)=\dfrac{cotg\alpha \, cotg\beta+1}{cotg\beta-cotg\alpha} \\\hline \end{array} $£