Proprietà dell'implicazione materiale

Le proprietà dell'implicazione materiale sono importanti perché la legano agli altri operatori e ci danno le "regole" per manipolare le proposizioni e scoprire ragionamenti validi, trovare equivalenze, negare proposizioni nel modo corretto!  Ricordati che anche le proprietà della coimplicazione materiale sono importanti per questo scopo. 

Le proprietà dell'implicazione materiale sono molto interessanti perché legano l'implicazione (se... allora...) agli altri operatori (negazione e disgiunzione).

Accedi per sempre a tutte le lezioni FREE con video ed esercizi spiegati!

Prerequisiti per imparare le proprietà dell'implicazione e della coimplicazione materiale

I prerequisiti per imparare le proprietà dell'implicazione e della coimplicazione materiale sono:

Proprietà dell'implicazione

transparent placeholder

L'implicazione gode di alcune proprietà:

  • negazione;
  • riflessività;
  • mista £$1$£ (lega negazione e disgiunzione);
  • mista £$2$£ (lega negazione e congiunzione);
  • transitività.

Si scrivono così:

  • £$ p \Rightarrow q = \overline q \Rightarrow \overline p$£;
  • £$ p \Rightarrow p = V$£;
  • £$ p \Rightarrow q = \overline p \vee q$£ ;
  • £$ p \Rightarrow q = \overline{(p \wedge \overline q)}$£;
  • £$[(p \Rightarrow q) \wedge (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)= V$£.

Trovi gli esercizi su questi argomenti nella lezione successiva.

La negazione dell'implicazione

Come si nega un’implicazione?

La proposizione £$ p \Rightarrow q $£ è equivalente a £$ \overline q \Rightarrow \overline p. $£

Ad esempio:

£$ P \Rightarrow Q$£: ‘‘Se è una zebra allora ha le strisce.’’

è equivalente a:

£$ \overline Q \Rightarrow \overline P $£: ‘‘Se non ha le strisce, allora non è una zebra!’’

Devo invertire £$P$£ con £$Q$£! Infatti se fosse £$ \overline P \Rightarrow \overline Q, $£ sarebbe:

Se non è una zebra, allora non ha le strisce!” ... Invece la tigre non è una zebra, ma ha le strisce!

Questo lo si dimostra utilizzando la tavola di verità:

£$\begin{array}{|c|c|c|c|c|c|} \hline P & Q & P \Rightarrow Q & \overline Q & \overline P & \overline Q \Rightarrow \overline P \\ \hline V & V & V & F & F & V \\ \hline V & F & F & V & F & F \\ \hline F & V & V & F & V &V \\ \hline F & F & V & V & V & V \\ \hline\end{array}$£

Infatti la terza colonna e la sesta sono uguali e quindi le espressioni sono equivalenti.

Trovi gli esercizi su questi argomenti nella lezione successiva.

La riflessività dell'implicazione

La riflessività dell'implicazione: £$ \pmb{P}$£ implica se stessa? Sì!

£$ P \Rightarrow P = V $£ cioè è una tautologia.

Ad esempio:

£$ p \Rightarrow p $£ : "Se il mio gatto è bianco, allora è bianco!"

In questo caso la tabella è:

£$\begin{array}{|c|c|c|}\hline P & Q=P & P \Rightarrow Q \\ \hline V & V & V \\ \hline F & F & V \\ \hline\end{array}$£

Trovi gli esercizi su questi argomenti nella lezione successiva.

La proprietà dell'implicazione che lega negazione e disgiunzione

Come trasformo l’implicazione in un’espressione equivalente che contiene la negazione e la disgiunzione?

Esempio: ‘‘Se non sbaglio, Granada è in Spagna!’’

£$p \Rightarrow q$£

L'implicazione può essere riscritta utilizzando la negazione e la disgiunzione:

‘‘O mi sbaglio, o Granada è in Spagna!’’

£$ \overline p \vee q $£

In questo modo abbiamo legato l’implicazione alla disgiunzione ed alla negazione: £$ p \Rightarrow q = \overline p \vee q $£

Questo lo si può verificare mediante la tavola di verità:

£$\begin{array}{|c|c|c|c|c|}\hline P & Q & P \Rightarrow Q & \overline P & \overline P \vee Q \\ \hline V & V & V & F & V \\ \hline V & F & F & F & F \\ \hline F & V & V & V & V \\ \hline F & F & V & V & V \\ \hline\end{array}$£

Come si vede la terza e la quinta colonna sono uguali e quindi le espressioni sono equivalenti.

Trovi gli esercizi su questi argomenti nella lezione successiva.

La proprietà dell'implicazione che lega negazione e congiunzione

Come trasformo l’implicazione in un’espressione equivalente che contiene la negazione e la congiunzione?

Dalla proprietà che lega negazione e disgiunzione e dalle leggi di De Morgan possiamo ricavare direttamente la negazione con la congiunzione senza utilizzare le tavole di verità:

£$ P \Rightarrow Q= \overline P \vee Q= \overline P \vee \overline {\overline Q} = \overline {(P \wedge \overline Q)}$£

Otteniamo:

£$ P\Rightarrow Q = \overline {(P \wedge \overline Q)} $£

Ad esempio:

‘‘Se non mi invita, allora non vado.’’ £$=$£ ‘‘Non è che non mi invita e vado.’’

Trovi gli esercizi su questi argomenti nella lezione successiva.

La transitività dell'implicazione

Come si legano 3 implicazioni?

Utilizziamo la proprietà transitiva:

£$ [(p \Rightarrow q) \wedge (q \Rightarrow r)] \Rightarrow (p \Rightarrow r) = V $£

Ad esempio:

Se £$p \Rightarrow q:$£

"Se c’è il sole, allora vado al mare"

£$q \Rightarrow r:$£

"Se vado al mare, allora porto il salvagente"

allora £$p \Rightarrow r$£:

"Se c’è il sole, allora porto il salvagente".

Trovi gli esercizi su questi argomenti nella lezione successiva.

#offerta 6 mesi 45 euro 9 mesi 75 euro!
#offerta 6 mesi 45 euro 9 mesi 75 euro!