Prerequisiti per Derivata del prodotto di funzioni
I prerequisiti per imparare a calcolare la derivata del prodotto di funzioni sono:
Quali sono le proprietà del prodotto di due funzioni? Come calcolare la derivata del prodotto di due funzioni? Scopri subito la formula da utilizzare e impara ad utilizzarla osservando tutti gli esempi.
Le funzioni che utilizziamo più di frequente sono somme, prodotti di funzioni che conosciamo bene. Sfruttiamo le regole delle derivate fondamentali e impariamo le proprietà delle operazioni per imparare a calcolare anche la derivata del prodotto di due o più funzioni.
I prerequisiti per imparare a calcolare la derivata del prodotto di funzioni sono:
Hai due funzioni e le moltiplichi. Cosa succede? Ottieni una nuova funzione: la funzione prodotto.
Per esempio hai la funzione £$f(x)=x^2$£ e la funzione £$g(x)= sen (x)$£, moltiplicale e ottieni una nuova funzione £$p(x)= x^2 \cdot sen (x)$£
Come fai per calcolare la derivata? La derivata del prodotto di funzioni NON è uguale al prodotto delle derivate delle due funzioni (fattori). Vediamo come funziona per il prodotto di due funzioni: la derivata del prodotto di due funzioni è uguale al prodotto del primo fattore derivato per il secondo senza derivare, sommato al primo senza derivare per il secondo derivato: £$ (f(x) g(x))’=f’(x)g(x)+f(x)g’(x) $£. Se le due funzioni sono quelle dell'esempio precedente abbiamo: £$f(x)=x^2 \to f'(x)=2x$£ e £$g(x)=sen (x) \to g'(x)=cos(x)$£, la derivata del prodotto è: £$p'(x)=2x \cdot sen (x)+x^2 \cdot cos (x)$£
Il prodotto e la somma sono commutativi quindi non è importante quale consideri come primo o secondo fattore, quello che conta è che quello che derivi la prima volta non sia derivato la seconda e viceversa per il secondo!
Quando può essere realmente utile la regola di derivazione del prodotto? Raramente ti capiterà di dover moltiplicare due o più funzioni, più spesso ti capiterà di avere una funzione che non sai derivare e che, scomposta nel prodotto di due funzioni elementari è facile da derivare. Per esempio la funzione £$h(x)=\ln (x)^{x^2}$£ non ha derivata immediata, ma applicando le proprietà dei logaritmi puoi scriverla come il prodotto: £$h(x)=x^2 \cdot \ln x$£
Il prodotto di una funzione per una costante, è un caso particolare di prodotto di funzioni dove una delle due funzioni è sempre una costante. La formula della derivata del prodotto per una costante diventa: £$ (c f(x))’=c f’(x)$£. Cioè se moltiplico £$f(x)=x$£ per la costante £$7$£, ottengo la funzione £$p(x)=7x$£ che ha derivata £$p'(x)=7 \cdot 1+0 \cdot x=7 \cdot 1 =7$£
Trovi gli esercizi su questo argomento in questa lezione.
Abbiamo visto la formula della derivata del prodotto di due funzioni. Per la derivata del prodotto di tre o più funzioni, qual è la regola? Sempre la stessa! Basta applicare la proprietà associativa del prodotto e poi la regola di derivazione del prodotto di due funzioni.
Se £$p(x)=f(x)g(x)h(x)$£ è il prodotto di tre funzioni, associa due di queste e scrivi il prodotto così: £$p(x)=f(x) \cdot (g(x)\cdot h(x))$£ e la derivata è £$p'(x)=f'(x) \cdot (g(x)h(x))+f(x)(g(x)h(x))'$£ Cioè, sviluppando i calcoli:
£$p'(x)=f'(x)g(x)h(x)+f(x)(g'(x)h(x)+g(x)h'(x))=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'(x)$£
Per esempio se le tre funzioni sono £$f(x)=x^2$£, £$g(x)=sen (x)$£ e £$h(x)=\sqrt{x}$£, moltiplicandole ottieni la funzione prodotto £$p(x)=x^2 \cdot sen(x) \cdot \sqrt{x}$£. La derivata del prodotto £$f(x)\cdot g(x)$£ è £$(2x \cdot sen (x)+x^2 \cdot cos (x))$£, quindi associamo le funzioni così: £$p(x)=(x^2 \cdot sen (x)) \cdot \sqrt{x}$£, calcoliamo la derivata: £$p'(x)=(2x \cdot sen (x)+x^2 \cdot cos (x)) \cdot \sqrt{x}+ (x^2 \cdot sen (x)) \cdot \frac{1}{2\sqrt{x}}= 2x \cdot sen (x) \cdot \sqrt{x}+x^2 \cdot cos (x) \cdot \sqrt{x}+x^2+sen(x)+\frac{1}{2\sqrt{x}}$£
Se il prodotto è di quattro, cinque o più funzioni, la regola è sempre la stessa. Riscrivi il prodotto con la proprietà associativa e utilizza la formula della derivata del prodotto!
Trovi gli esercizi su questo argomento in questa lezione.