Integrali impropri

Ripassa per l'esame di Matematica dell'Università gli integrali impropri: impara cosa sono e come si calcolano gli integrali impropri di prima specie, di seconda specie e di terza specie.

Appunti

Gli integrali impropri sono quelli in cui gli estremi di integrazione sono infiniti o l'intervallo di integrazione contiene punti che non appartengono al dominio della funzione. Impara a risolvere un integrale improprio ricorrendo ai limiti e tramite gli esercizi svolti. Capisci quando un integrale improprio è convergente, divergente o indeterminato.

In questa lezione imparerai:

  • Integrale improprio di prima specie: di che tipo è l'integrale improprio di prima specie e formula risolutiva
  • Integrale improprio di seconda specie: di che tipo è l'integrale improprio di seconda specie e formula risolutiva
  • Integrale improprio di terza specie: di che tipo è l'integrale improprio di terza specie e formula risolutiva

Un integrale è improprio quando nell'intervallo di integrazione ci sono degli infiniti o dei punti di discontinuità della funzione. In questi casi calcoliamo l'integrale ricorrendo al calcolo di un limite.

Può accadere che il limite:

  • esista finito, allora l'integrale è convergente e la funzione è integrabile in senso improprio. L'integrale rappresenta un'area finita;
  • esista infinito, allora l'integrale è divergente e la funzione non è integrabile in senso improprio. L'integrale rappresenta un'area infinita;
  • non esista, allora l'integrale è indeterminato e la funzione non è integrabile in senso improprio. Non possiamo calcolare l'area.

Accedi per sempre a tutte le lezioni FREE con video ed esercizi spiegati!

Prerequisiti per Integrali impropri

Integrale improprio di prima specie

Gli integrali impropri sono di prima specie quando uno o entrambi gli estremi di integrazione sono infiniti.

La formula per risolvere un integrale improprio di prima specie è:

  • £$\int_a^{+ \infty} f(x) \ dx = \lim\limits_{t \to \ + \infty} \int_a^t f(x) dx$£
  • £$\int_{- \infty}^a f(x) \ dx = \lim\limits_{t \to \ - \infty} \int_t^a f(x) dx$£
  • £$\int_{- \infty}^{+\infty} f(x) \ dx = \lim\limits_{t \to \ - \infty} \int_t^a f(x) dx +\lim\limits_{s \to \ + \infty}\int_a^s f(x) dx$£, con £$ a \in (- \infty, +\infty)$£

Integrale improprio di seconda specie

Gli integrali impropri sono di seconda specie quando uno degli estremi di integrazione è un punto di discontinuità della funzione.

La formula per risolvere un integrale improprio di prima specie è:

  • se £$ f(x)$£ ha dominio £$[a,b)$£, allora £$\int_a^{b} f(x) \ dx = \lim\limits_{t \to \ b} \int_a^t f(x) dx$£
  • se £$ f(x)$£ ha dominio £$(a,b] $£ allora £$\int_{a}^b f(x) \ dx = \lim\limits_{t \to \ a} \int_t^b f(x) dx$£

Integrale improprio di terza specie

Gli integrali impropri sono di terza specie quando nell'intervallo di integrazione c'è un punto di discontinuità per la funzione.

Sia £$c \in [a,b]$£ il punto di discontinuità per £$f(x)$£, allora puoi calcolare l'integrale di terza specie con la formula:

£$\int_{a}^{b} f(x) \ dx = \lim\limits_{t \to \ c^-} \int_a^t f(x) dx +\lim\limits_{t \to c^+}\int_t^b f(x) dx$£

Esercizi sugli integrali impropri

Allenati con gli esercizi sugli integrali impropri per arrivare preparato alla verifica o all'interrogazione!